If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.04x^2+0.01x-5=0
a = 0.04; b = 0.01; c = -5;
Δ = b2-4ac
Δ = 0.012-4·0.04·(-5)
Δ = 0.8001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.01)-\sqrt{0.8001}}{2*0.04}=\frac{-0.01-\sqrt{0.8001}}{0.08} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.01)+\sqrt{0.8001}}{2*0.04}=\frac{-0.01+\sqrt{0.8001}}{0.08} $
| Y=(3x+)(2x+5) | | x^2-8x=-91 | | 10s+250=90+12s | | 7/5+5x/3=56/15 | | x-0.75x=12 | | 10x(x+1)-6x=9(x^2+5) | | 46-10×=18+4x | | 20+6p=65-9p | | -13/20x=7 | | -7x+4-3(x-1)=-3x-(6x-3)+3 | | b^2-4b=96 | | 6x+2=3×-1 | | -11+4r,r=5 | | 21(6t+1.2)^2=0 | | 290=65+(25+8)w | | 65+(25+8)w=290 | | -8(x+1)-x-12=-9(x+4)+16 | | 0=19+5.7t+4.9t^2 | | 2.3t+1.19=-18.82 | | 8/3x+1/3x=4x+55/3+8/3x | | (20+x)/3=(33+x)/4 | | 21(6t+1.2)^2-153(6t+1.2)+82=18914 | | 1/5(x-4)=3x-2(x-1)+58/5 | | (20+x)/3=(33+x)/3 | | 1÷9(3t-6=t+6÷18 | | 2/7+7x/5=66/35 | | X-1x-132=0 | | 11x+5x=13x | | 5+5y=20 | | 5(-x–5)=3(5x–4)-10x | | 5(2v+)=170 | | 15x+4,x=2 |